Испытываем на прочность вариаторы. Участники нашего сравнительного теста — полноприводные кроссоверы Mitsubishi Outlander, Subaru Forester, Nissan Qashqai и — вне зачета — моноприводная Toyota RAV4.
вариаторы
Соперники: Mitsubishi Outlander (2,4 л, 167 л.с., полный привод, вариатор с шестью виртуальными передачами), Subaru Forester (2,0 л, 241 л.с.,полный привод, вариатор с восемью виртуальными передачами), Nissan Qashqai (2 л, 144 л.с., полный привод, вариатор с семью виртуальными передачами), Toyota RAV4 (2 л, 146 л.с., передний привод, вариатор с семью виртуальными передачами)Соперники: Mitsubishi Outlander (2,4 л, 167 л.с., полный привод, вариатор с шестью виртуальными передачами), Subaru Forester (2,0 л, 241 л.с.,полный привод, вариатор с восемью виртуальными передачами), Nissan Qashqai (2 л, 144 л.с., полный привод, вариатор с семью виртуальными передачами), Toyota RAV4 (2 л, 146 л.с., передний привод, вариатор с семью виртуальными передачами)
Они перегреваются на высокой скорости и нежизнеспособны вне ровного асфальта! Они отказывают даже при некритических нагрузках!
Слухи о сомнительной надежности бесступенчатых трансмиссий (СVT) появляются едва ли не быстрее, чем выходит в свет очередная новая модель с вариатором. Причем рождаются они чаще вокруг полноприводных кроссоверов, трансмиссии которых наиболее нагружены и зачастую работают на пределе возможностей — прежде всего на пересеченной местности. И слухи эти не лишены оснований: есть проблемы! Как показывает практика, случаются они и в менее обидных ситуациях — даже на городском асфальте.
Вот почему мы свели в разноплановых испытаниях три полноприводных кроссовера — новый «Ниссан-Кашкай» с модернизированной трансмиссией последнего поколения, «Субару-Форестер» и обновленный «Мицубиси-Аутлендер». А вне зачета в наших тестах участвовала моноприводная «Тойота-RAV4». Теперь можно купить и такую, причем именно с вариатором.
ТЕСТ «АВТОСТРАДА»
02
ТЕСТ «АВТОСТРАДА»ТЕСТ «АВТОСТРАДА»
Разговоры о том, что бесступенчатые трансмиссии перегреваются на высоких скоростях, многие слышали неоднократно. Испытатели «За рулем» знают об этом по собственному опыту: перегрев трансмиссии «Аутлендера» в прошлогоднем тесте (ЗР, 2013, № 7) как раз и подтолкнул к идее затеять эти испытания. Причем на этот раз мы взяли обновленный «Аутлендер», которому производитель вернул радиатор вариатора (по нашему настоянию — см. ЗР, 2014, № 8). Понятно, что радиатор должен обеспечивать оптимальный температурный режим узла и оберегать его от перегрева. Помогло ли?
Проверяли автомобили режимом, близким к предельному и характерному скорее для безлимитных немецких автобанов. У нас так мало кто ездит, да и негде так ездить, — но нам важна чистота эксперимента! По скоростному кольцу полигона мы проехали 250 км со средней скоростью около 170 км/ч. Если вариаторы выдержат такой темп, то за их здоровье в обычных условиях эксплуатации можно не беспокоиться.
Наматывая круг за кругом, внимательно следим за поведением машин. И… не находим ничего интересного. Ни один автомобиль не выказал даже намека на перегрев трансмиссии — все отработали без малейших нареканий. Так что победителя в этом тесте нет. Но куда важнее, что нет и побежденных! Итак, вживленный в «Аутлендер» радиатор вариатора в данных условиях со своей задачей справляется блестяще.
1. За трансмиссию обновленного в этом году «Аутлендера» можно не волноваться: высокие скорости она выдержит.
2. «Форестер» с 241‑сильным мотором, естественно, способен ехать быстрее соперников, но никаких признаков перегрева трансмиссии мы не обнаружили.
3. «Кашкай» тоже без нареканий прошел скоростной тест.
4. Переднеприводная «Тойота» успешно прошла скоростной тест в том же режиме, что и полноприводные соперники.
ТЕСТ «БОРДЮР»
03
ТЕСТ «БОРДЮР»ТЕСТ «БОРДЮР»
Этот тест оказался для машин самым тяжелым. Высота препятствия — 185 мм (это еще не самый высокий бордюр среди тех, которые водители готовы штурмовать). Задача: подняться на него передними, а затем и задними колесами, поставив машину под прямым углом к «тротуару». Затем нужно повторить упражнение, но уже задним ходом. Заезжать следует, конечно же, внатяг, ведь даже самые ярые покорители тротуаров не осмелятся наскакивать на такой высокий бордюр с разгона.
Двигаясь вперед, «Субару» преодолел препятствие без напряжения. А заехать на бордюр задом отказался. Причем электроника, оберегая трансмиссию, просто не дает колесам прокручиваться, а двигателю запрещает набирать обороты. Как же так? В городе-то можно отказаться от такого штурма и развернуться на сто восемьдесят, а если подобная «засада» случится на бездорожье? Всё, задним ходом — никак?
Точно так же повел себя и «Мицубиси». Причем заехать на бордюр задним ходом отказался даже после включения режима Lock, жестко блокирующего муфту привода задних колес.
А затем фотограф вдруг попросил заехать на бордюр еще раз — вновь передним ходом. «Аутлендер» уверенно перепрыгнул бордюр передними колесами, а задними — отказался, хотя на панели приборов не вспыхнула ни одна аварийная лампа. Просто двигатель не раскручивался свыше 1200 об/мин, а колеса стояли на месте. Решили переждать минут десять. И угадали: машина с остывшей трансмиссией, как и в первый раз, перепрыгнула преграду и задними колесами.
«Кашкай» оказался самым стойким. Двигаясь вперед, он легко миновал бордюр и передними, и задними колесами — и так же уверенно пошел назад. Но, преодолев препятствие задними колесами, «Кашкай» встал. Дальше пороху не хватило: передние колеса не крутятся, двигатель отказывается набирать обороты. Тем не менее по числу выполненных с первого раза упражнений «Кашкай» в этом тесте лидер. «Мицубиси» и «Субару» поделили второе и третье места.
Напустили на бордюр и моноприводную «Тойоту». Немного покрутив колесами, она отказалась преодолевать его как передним, так и задним ходом. Логично — и для переднеприводной машины ничуть не стыдно.
5. «Мицубиси» без заминок миновал препятствие передним ходом, но задним ходом преодолеть его не смог.
6. Двигаясь вперед, «Субару» легко взял 185‑миллиметровый бордюр, а назад ехать отказался.
7. Победителем теста стал «Кашкай». Он заехал на препятствие даже задним ходом — правда, лишь задними колесами.
8. Переднеприводной «Тойоте» такие препятствия не по плечу.
ТЕСТ «ОБГОН»
04
ТЕСТ «ОБГОН»ТЕСТ «ОБГОН»
На высоких скоростях перегреть вариаторы нам не удалось. Попробуем сделать это в переходных режимах, имитируя частые обгоны?
Делаем несколько ускорений подряд в режиме «педаль в пол» — с 60 до 100 км/ч и с 80 до 120 км/ч. Ни один автомобиль не проявил признаков недовольства: время разгона меняется в пределах погрешности.
Усложняем задачу. После достижения 100 и 120 км/ч — резкое торможение до 60 и 80 км/ч соответственно. И сразу — новое ускорение, вновь в режиме «педаль в пол». Лишь после такого издевательства нам удалось уловить некую задумчивость. После резкого нажатия педали газа двигатели поначалу не набирают более 2500 об/мин и придерживают автомобиль на несколько мгновений. Что такое эти мгновения? Для «Мицубиси» и «Тойоты» — 0,2–0,3 с, в обычной эксплуатации совершенно незаметные. «Ниссан» проигрывал сам себе 0,8–1,0 с. Но и это владелец вряд ли почувствует «в быту». Тем более что получили мы эти данные в почти гоночном режиме — с резкими разгонами и торможениями.
Тем не менее первое место по формальным признакам отдаем «Субару», второе — «Мицубиси», третье — «Ниссану». А внезачетная «Тойота» в этом тесте выступила не хуже ставшего вторым «Мицубиси».
ТЕСТ «ПОДЪЕМ»
05
ТЕСТ «ПОДЪЕМ»ТЕСТ «ПОДЪЕМ»
Сухой проселок машины проходят спокойно. Залезли мы сюда в основном для того, чтобы испытать машины на крутом, но сухом грунтово-песчаном подъеме. Автомобили не соревновались в скорости — слишком разные двигатели. Задача испытателей предельно проста: несколько раз подняться и оценить поведени
«Слушай, а не страшно брать, с вариатором-то?» – все время спрашивают те, кто собрались покупать подержанный Nissan Qashqai или, скажем, Audi A5. Бесступенчатых трансмиссий боятся… Справедливо ли? Все зависит от конкретного типа коробки – «вариантов вариатора» очень много.
История часто несправедлива в отношении вариатора. То это перспективная трансмиссия, то символ дешевой и неудачной автоматической КПП… После выпуска первых легковушек DAF 600 с вариатором и попыток применения аналогичных конструкций с ремнями на машинах Вольво прошло уже более тридцати лет, и изящная идея все еще пытается обрести столь же изящное техническое воплощение.
За прошедшие годы вариаторы из экзотики превратились во вполне себе обычный тип «автомата», особенно на японских машинах, успев пережить несколько кризисов, набирая и теряя баллы репутации и претерпев несколько крайне значительных изменений конструкции. Причем сейчас в серийном производстве присутствуют все они вместе взятые. Обычно вопрос «что выбрать» не стоит выбора типов трансмиссий на одной модели машины нет, максимум можно выбирать между механической КПП и вариатором (редкие исключения только подтверждают правило), но этот материал будет полезен для понимания того, с чем придется столкнуться в процессе эксплуатации.
Принципиальная конструкция
Напомню, что суть вариаторной трансмиссии довольно проста. Передаточное отношение меняется в определенном диапазоне плавно, без ступеней, при этом обороты мотора могут находиться в оптимальной зоне для данного режима движения, что повышает экономичность и улучшает тяговые возможности машины. Это в теории.
На практике же различные конструктивные исполнения могут иметь множество недостатков, порой перечеркивающих их достоинства. Есть несколько способов передавать крутящий момент, плавно меняя передаточное отношение. Самый простой и очевидный способ – это передача момента ремнем через шкивы, диаметры которых постоянно изменяются. Конструкции такого рода были известны с древности – обычный кожаный ремень мог двигаться по коническому шкиву, удерживаемый от сползания роликом натяжения.
Диаметр второго шкива при этом оставался неизменным или же, как и в современных конструкциях, шкивы были сложными и составными, а ремень просто зажимался с боков – с одной стороны пружиной внутри шкива, обеспечивающей натяжение, а на другой шкив мог регулироваться. Последняя конструкция ближе всего к существующим поныне автоматическим трансмиссиям.
Старинный вариант
Предприятие братьев Ван Дорн, входившее в промышленную империю DAF, использовало простую схему с тянущим мягким ремнем – но уже не кожаным, а металлокордным – для своих легковушек. После покупки DAF компанией Volvo схему попытались применить на более крупной машине – Volvo 340, но не очень удачно. Трансмиссия получилась очень большой, заняв много места в багажнике, – у машины была схема трансэксл, когда двигатель расположен спереди, а КПП – на заднем мосту. Открыто расположенные шкивы загрязнялись, а ремни пробуксовывали, растягивались и горели. Опыт был признан неудачным.
Впрочем, сама конструкция не исчезла. Не пригодившись на автомобилях, она завоевала себе место под капотом мотороллеров и снегоходов, вполне соответствуя применению этих транспортных средств. С меньшим крутящим моментом она прекрасно справлялась, недорогой тянущий ремень можно было менять раз в сезон, а то и чаще, эта простая операция не требовала серьезных затрат, а малая масса и простота обеспечила самое широкое распространение. В общем, обычная схема с тянущим ремнем жива и поныне. Причем чувствует она себя очень уверенно, ни о какой замене на сложные наборные ремни или цепи речи даже не идет.
Варьируем материал ремня
Вариаторы, столь успешно прижившиеся в мототехнике, на машинах долгие годы не применялись, но простота и удобство схемы не давали конструкторам покоя. Основные проблемы были уже давно выявлены – при хорошем динамическом диапазоне такой АКПП ей все же очень мешали снижение КПД при крайних передаточных отношениях (когда разница между диаметрами ведущего и ведомого шкивов становилась слишком большой) и большая нагрузка на ремень при этом.
Сильно улучшило позиции вариатора изобретение компанией братьев Ван Дорн наборного стального ремня. Конструкция его состояла из нескольких несущих стальных лент-ремней и перпендикулярно нанизанных на них стальных пластин сложной формы, позволяющей передавать вращение со шкивов.
Для трогания с места предусматривалось обычное фрикционное сцепление (как на «механике»), а для расширения динамического диапазона и заднего хода еще и планетарная передача, знакомая по классическим АКПП. Поначалу вариаторы оснащались еще и повышающими редукторами для снижения передаваемого момента, но серийные конструкции были устроены уже немного проще.
Ресурс таких конструкций возрос до вполне приемлемых 80-120 тысяч километров пробега, но недостатков хватало. И в первую очередь не хватало надежности в работе. Особого распространения схема не получила, так как дальнейшее небольшое усовершенствование схемы работы ремня значительно улучшило характеристики трансмиссии.
Основные недостатки касались вибраций и (все еще) крайних передаточных отношений. При минимальном диаметре одного из шкивов ремень на нем сильно изгибался и к тому же пробуксовывал из-за недостаточной площади соприкосновения. Любые рывки тяги провоцировали пробуксовку еще сильнее. Пробуксовка быстро изнашивала ремень и шкивы. Возникающие при пробуксовке вибрации попутно вредили трансмиссии и снижали комфорт. В результате даже такая усовершенствованная конструкция применялась только на малолитражных машинах. Наиболее популярная из них – это Nissan Micra K11, дебютировавшая в 1992 году.
На фото: Nissan Micra K11
Тянущий вариант и гидротрансформатор
Исправить ситуацию помог гидротрансформатор вместо фрикционного сцепления и изменение схемы работы ремня. «Бублик», который был задействован при трогании машины, позволял избежать рывков тяги, а заодно и облегчить старт. А значит, можно было ограничиться меньшим передаточным отношением при трогании и заодно снизить вероятность пробуксовки из-за смягчения рывков ГТД.
Второе важное новшество – применение так называемого «толкающего ремня». В этом случае крутящий момент передавался не на той ветви ремня, что тянул ведущий шкив, а на той, что он толкал. Стальные бандажи, основа ремня, не испытывали больше нагрузки на растяжение, а все усилие передавалось через пакет пластин.
Это нововведение уменьшило износ ремня и улучшило условия его работы. А все вместе позволило применять вариатор на весьма мощных моторах. Изначально моторы 1,6 литра были пределом, но сейчас аналогичные конструкции применяют уже и на моторах 2,5, а то и 3,5 литра. Например, так устроены самые распространенные конструкции вариаторов Jatco, применяемые на многих японских машинах, например, бестселлерах Nissan Qashqai и X-Trail, а за ними – Renault Megane и Fluence, Mitsubishi Outlander и ASX…
На фото: вариатор Jatco jf011e
Путь от первых конструкций, на первый взгляд, не так уж велик… Но на деле в эти годы шла долгая кропотливая работа по улучшению вариатора такой схемы, позволившая сделать его весьма надежным, простым в эксплуатации и ремонте, сохранив при этом относительно недорогую конструкцию.
Вариации на тему
Схема с толкающим ремнем на слабых моторах может применяться и без ГТД, что демонстрируют вполне неплохие конструкции на некоторых китайских машинах. Простого сцепления хватает для обеспечения нужных характеристик, пусть и машины с упрощенными трансмиссиями едут уже не столь хорошо. Зато цена совсем невелика, а конструкция даже проще, чем у иной «механики». Собственно, один из первых удачных вариаторов с толкающих ремнем на Subaru Justy был устроен именно так.
На фото: Subaru Justy
Вариант с цепью
Использовать вместо ремня цепь кажется очень разумной затеей. Благо вариант это проверенный, роликовая цепь давно заменила ременную передачу там, где возможностей ремня уже не хватало, в тех же мотоциклах или промышленных передачах. Вот и в вариаторах цепь пришла на смену ремню, когда показалось, что тянущий ремень уже не справляется.
Разумеется, у вариаторов нет зубцов для зацепления, так что мощная пластинчатая цепь просто зажимается с боков шкивами. Серьезными преимуществами являются меньший возможный радиус закругления и большая прочность на сжатие. Да и растяжение цепи зависит в основном от износа в ее подшипниках, а значит, теоретически есть возможность сделать ее очень ресурсной, ограниченной только по износу контактных площадок.
В результате вариатор с цепью может быть заметно прочнее, меньше боится пиковых нагрузок и позволяет расширить динамический диапазон трансмиссии. Есть и экспериментальные конструкции, где один из шкивов зубчатый, а натяжение обеспечивается дополнительным роликом, но в серийном производстве пока господствует более компактная схема с двумя подвижными шкивами и передачей момента простым фрикционным зацеплением.
Конструкция с тянущей цепью была успешно реализована компанией Volkswagen в сотрудничестве с LuK для машин с продольным расположением двигателя в конце девяностых годов и применяется вплоть до сегодняшнего дня. Речь идет о вариаторах Multitronic – они выдерживают крутящий момент до 310 Нм. Применение цепи позволило заметно поднять передаваемый момент, а все недостатки трансмиссии оказались конструктивными и мало связанными с самой схемой.
Разве что ресурс цепи получился сравнительно невелик, около 100 тысяч километров пробега, но с учетом относительно небольшой ее цены и простоты замены это можно считать вполне успешным результатом. Помощь в разработке цепи и шкивов оказывала компания LuK, она же предложила свои услуги компании Subaru, когда та решила создать свой клиноцепной вариатор Lineatronic.
Результат впечатляет, новая трансмиссия «переваривает» момент двухлитрового турбомотора и при этом умеет быть экономичной и спортивной одновременно. Без ГТД и тут не обошлось. Для Субару это не первый опыт работы с вариаторами, они были одними из пионеров внедрения вариаторов с толкающим ремнем, выпустив в 1984 году свой вариант ECVT для модели Justy, но от дальнейших разработок отказались, хотя первый опыт и был весьма успешным.
Вариации в форме тора
Европейские производители пошли по пути роботизации вальных КПП (Volkswagen DSG, Ford PowerShift и т.п.), а японские компании, объединив усилия, продолжают работу над вариаторами. Следующим шагом в развитии стал отказ от ремня и цепи при передаче крутящего момента в пользу трения шкивов.
Подобные конструкции применялись и ранее, но фрикционная передача с коническими валами и промежуточным роликом слишком громоздка для применения в автомобиле. Но на помощь пришла схема с тороидальными поверхностями, так называемый «тороидальный вариатор». В этом случае вращение передается с ведущего тороидального конуса на ведомый с помощью промежуточного ролика.
Хитрость конструкции в том, что расстояние между точками на прямой, пересекающей оси вращения промежуточного ролика и тороидальных поверхностей, всегда одинаковое. А значит, не нужна цепь – один ролик вращается, одним краем касаясь малого радиуса конуса, а другой – большого, обеспечивая изменение передаточного отношения. Нет ни цепи, ни ремня, при этом размер точки контакта невелик, но постоянен, контактные поверхности можно изготовить из твердых материалов, а роликов использовать несколько – для увеличения площади контакта.
На практике такую технологию применял только Nissan на своих вариаторах Extroid, ставившихся на ряд мощных моделей вроде не особо распространенных у нас на рынке Cedric и Skyline. На этом пока что все закончилось.
Тороидальные вариаторы выглядят сложнее традиционных – приходится использовать две последовательных передачи для обеспечения нужного динамического диапазона. Проблема в том, что из-за необходимости применять очень дорогой и износостойкий материал для роликов, трансмиссия оказалась дорогой, сопоставимой по цене с традиционными АКПП с «бубликом» и планетарными редукторами.
Впрочем, прогресс не стоит на месте, и очень возможно, что у перспективного Extroid появятся более доступные наследники.
На фото: вариатор Nissan Extroid
Варианты без трения
Сейчас все серийные конструкции вариаторов передают крутящий момент за счет трения в зоне контакта цепи, ремня или роликов, но уже существуют наработки, позволяющие отказаться от передачи трением и воспользоваться возможностями зубчатого зацепления, а значит, повысить КПД и уменьшить износ рабочих элементов конструкции. Причем они есть как для конструкций с цепью, так и для тороидальных вариаторов.
Особый профиль зубьев позволит уменьшить давление в точке зацепления и при этом иметь возможность так же плавно менять передаточное отношение. Вариаторы с цепью и дополнительным натяжным роликом уже сейчас могут обеспечить отсутствие проблем с КПД у передачи в одном из крайних положений валов, но этого недостаточно, чтобы получить преимущество перед более компактными схемами с двумя раздвижными шкивами. До практического применения этой схемы, впрочем, дело пока что не дошло – только до опытных моделей и теоретических изысканий.
В частности, в прошлом году патент на зубчатый вариатор с постоянным зацеплением оформил профессор К.С. Иванов из Казахского института механики и машиностроения. Возможно, именно этот вариант и есть будущее бесступенчатых трансмиссий.
На фото: зубчатый вариатор К.С. Иванова, фото: sovmash.com
Что дальше?
В общем и целом у вариатора есть куда развиваться помимо банального улучшения износостойкости ремня, цепи и конусов у классических конструкций и усовершенствования поверхностей торов и роликов у тороидальных. Теоретически это один из самых перспективных видов трансмиссий для ДВС, и исчезнет он, наверное, вместе с самим ДВС, в результате постепенного отказа от ДВС как основного двигателя и перехода на электрическую тягу.
Читайте также:
Цепные вариаторы
Вам может быть интересны также другие типы вариаторов:
Вариаторные коробки передач позволяют производить бесступенчатое изменение скорости вращения колёс автомобиля и управлять крутящим моментом. Наряду с гибкими ременными передачами усилия активно используются цепи. Они существенно отличаются от классического понимания цепной передачи мотоцикла или велосипеда.
Это устройство с огромным количеством звеньев, расположенных в шахматном порядке для максимально эффективного распределения усилия на разрыв. Запас прочности в этих изделиях может доходить до коэффициента 10:1.
Основные особенности цепного вариатора
Его принципиальное устройство ничем не отличается от клиноременного вариатора. Поэтому опишем только базовые отличия и основные положительные моменты:
- Цепь намного прочнее ремня. Она демонстрирует гораздо большее усилие на разрыв. В ремне может лопнуть одна из направляющих, после чего он сбрасывается со шкивов и прекращает функционировать. На поврежденных звеньях можно будет доехать до ближайшего автосервиса.
- Цепи имеют свойство растягиваться. Это происходит при слишком резком старте. Если не нужно ставить рекорд по достижению 100 км/ч с нуля – то берегите свой автомобиль и растяжки не произойдёт. Если это произошло, то ремонт практически невозможен.
- Устройство может сильно шуметь, хотя понятие уровня шума здесь относительное. Можно сказать, что это более шумный вариант, чем ременной вариатор.
- Из-за мощного антифрикционного взаимодействия цепь практически не теряет крутящий момент и более качественно передаёт его от двигателя. Он демонстрирует самый высокий КПД среди всех гибких передач.
Где применяются цепные вариаторы
Они используются на самых мощных автомобилях для осуществления бесступенчатой передачи. Для примера, ими комплектуются вариаторы топовых моделей от Audi. Несмотря на повышенный уровень шума, они дают гораздо большую надежность, по сравнению с ремнями, а разрыв одного или нескольких звеньев даст о себе знать характерным треском или звоном. Изготовление цепи стоит значительно дороже ремня, поэтому этот элемент не устанавливают на бюджетные автомобили.
Вариатор помогает сэкономить топливо и повысить комфорт вождения. Кроме того, он проще и дешевле в производстве, чем обычные автоматические коробки передач. Однако бесступенчатые автоматические коробки передач так и не смогли завоевать рынок. Не каждого устраивает особенность работы вариатора, и — что еще хуже – иногда они ломаются.
CVT – это сокращение от английского Continuously Variable Transmission, что означает бесступенчатая коробка передач. Вариатор — во многих отношениях трансмиссия необычная. Вместо классических зубчатых колес здесь используется стальной ремень или цепь, которая движется между двумя парами конических колес, образующих шкив.
Колеса установлены парой на входных и выходных валах. Каждая коническая пара может сближаться друг с другом или расходиться, благодаря чему бесступенчато меняется радиус шкива, и достигается плавное изменение передаточного отношения. При этом крутящий момент непрерывно передается от двигателя к колесам.
При движении с постоянной скоростью мотор работает на необычно низких оборотах, что и способствует снижению расхода топлива и повышению уровня комфорта. Пользователи автомобилей с CVT подчеркивают исключительную плавность движения – без толчков и рывков при старте. Вариаторы, как правило, меньше и легче классических автоматов. Поэтому они часто применяются в небольших городских автомобилях, особенно японских марок.
Но если все так хорошо, то почему доля автомобилей с CVT так мала? Выделить главную причину довольно сложно. Но многих водителей не устраивает специфическая работа коробок этого типа. Добавляешь газ, и двигатель, громко завывая, выходит на высокие обороты без заметного ускорения. Тихо становится лишь при движении с постоянной скоростью. Автолюбителей, любящих посильней вдавить педаль газа в пол, подобное поведение легкового автомобиля раздражает. Впрочем, так ведут себя, главным образом, бесступенчатые коробки передач из 80-х и 90-х годов.
Примерно 10 лет назад на рынке стали появляться CVT с так называемыми виртуальными передачами. В таком случае каждой из передач назначено определенное взаимное положение конических колес. Выбрать необходимую передачу можно, например, с помощью подрулевых лопаток (весел).
Данное решение используется с 2005 года в автомобилях Audi, оснащенных бесступенчатой трансмиссией Multitronic. В обычном режиме коробка ведет себя, как классический вариатор, т.е. поддерживает высокие обороты при разгоне. А работу «автомата» CVT имитирует только после перехода в спортивный режим.
Конструктивные особенности
Вариаторы, условно, можно разделить на две группы: со стальным ремнем и цепью. В бесступенчатых трансмиссиях присутствует и гидротрансформатор. Он нужен, прежде всего, для старта с места. Примечательно, но Multitronic обходится без него. В этих коробках используется пакет сцеплений и двухмассовый маховик.
Коробка вариатор имеет ряд серьезных ограничений, которые инженеры пока так и не смогли обойти. Например, по конструктивным причинам, ни цепь, ни, тем более, стальной ремень не в состоянии передать высокий крутящий момент. Из-за этого область применения CVT в настоящее время ограничена максимальным крутящим моментом двигателя на уровне 350-400 Нм. Впрочем, этот порог перекрывает показатели многих современных двигателей. Тем не менее, в Audi уже начинают отказываться от использования бесступенчатых коробок «Multitronic».
В тоже время, другие производители упорно работают над усовершенствованием конструкции вариатора. Так Subaru демонстрирует все новые модели, оснащенные бензиновыми двигателями с турбонаддувом, полным приводом и бесступенчатой коробкой CVT (например, Lineartronic для Levorg).
Долговечность
О проблемах Audi с коробками Multitronic производства Luk слышал, наверное, каждый, кто хоть немного интересуется автомобилями. В CVT старого типа (1999-2006 гг.) постоянно сбоит управляющая электроника, выходит из строя механическая часть и преждевременно изнашивается цепь. Примечательно, что цепь использовали как раз для того, чтобы передать более высокий крутящий момент, но инженеры просчитались с ее прочностью. Со временем Немцы существенно доработали свои коробки, но проблемы все еще встречаются. Не вызывают доверия и другие немецкие вариаторы, например, ZF VT1-27T, применявшиеся в Mini R50/R53, и Mercedes 722.7/722.8 для моделей A/B-класса.
Гораздо меньше хлопот доставляют японские конструкции. Хотя, вариатор Jatco, используемый в различных моделях Nissan (например, Qashqai), тоже относится к группе риска. Общая проблема коробок CVT – это ограниченная доступность запасных частей и нежелание некоторых механиков связываться с вариаторами. Бесспорный лидер по части надежности – вариаторы Toyota (Lexus).
Бесступенчатая автоматическая коробка, несмотря на сравнительно простую конструкцию, довольно сложная и дорогая в эксплуатации. В дополнение к неисправностям электроники и ремней/цепей встречается и преждевременный износ маховика. Стоит отметить, что двухмассовый маховик используется лишь в некоторых автомобилях с CVT (Ауди).
Заключение
Самое главное, не забывать о регулярной замене масла. К сожалению, не все производители ее рекомендуют. Если в сервисе Вам скажут, что менять масло в вариаторе не надо, то просто поищите другую мастерскую.
что это, как работает и чем хорош вариатор?
Вариатор сегодня заслужил довольно много симпатий… и вместе с ними разочарований владельцев, которых, впрочем, не так много. Но факт остаётся неизменным: несмотря на то, что вариатор был придуман очень давно, на сегодняшний день эта система является ещё достаточно «сырой» и не до конца доработанной даже самыми ведущими автопроизводителями.
В этой статье мы рассмотрим, что такое вариатор, как работает вариатор в типичном среднеразмерном автомобиле, чем он лучше АКПП и механической коробки — всё это мы узнаем, ответив на несколько вопросов на нашем пути:
- Чем вариатор лучше по сравнению со старой-доброй планетарной автоматической коробкой передач?
- Из каких частей состоит вариатор и как эти части работают?
- Какие недостатки имеет CVT по сравнению с обычными АКПП?
- Какое впечатление производит вариатор на водителя при управлении машины с ним?
- Какие марки и модели включают CVT?
- Есть ли другие варианты использования CVT, кроме автомобилей?
Во-первых, давайте рассмотрим, чем отличается вариатор от автомата и сравним его с традиционной автоматической коробкой передач.
Так выглядит вариатор «вживую»
Хронология инноваций в вариаторе
- 1490 — да Винчи показал общественности свои эскизы бесступенчатой трансмиссии (к автомобилям она, разумеется, не имела в то время никакого отношения).
- 1886 — подан первый патент на тороидальную CVT.
- 1935 — Dodge получает патент США на тороидальный вариатор.
- 1939 — впервые введена полностью автоматическая коробка передач на основе планетарной системы передач.
- 1958 — Daf (Нидерланды) также начинает оснащать свои автомобили вариатором.
- 1989 — Subaru Justy GL — первое американское производство автомобилей на вариаторах.
- 2002 — Saturn дебютирует с коробкой-вариатором.
- 2002 — Российские Лады (2112) получили возможность оснащаться вариатором вместо механической КПП.
- 2014 — Всё большее число новых автомобилей иностранных марок оснащаются вариаторами, и доля рынка автомобилей на CVT приближается к доле таковых на автомате.
Основы работы АКПП для понимания работы вариатора
Если Вы читали о структуре и функции автоматов, то Вы знаете, что работа такой трансмиссии являет собой изменение отношения передач между двигателем и колёсами автомобиля в автоматическом режиме. Другими словами, совсем без коробки передач автомобили будут иметь только одну передачу — оборудование, которое позволило бы автомобилю поехать на нужной скорости, и скорость эта зависела бы только от оборотов двигателя. Представьте себя на минуту за рулём автомобиля, который оборудован только первой передачей или машины только с третьей передачей. Первый автомобиль будет достаточно быстро ускоряться с места и сможет подняться на крутой холм, но его максимальная скорость будет ограничена до нескольких десятков километров в час. Второй автомобиль, с другой стороны, сможет ехать во многих случаях и более 100 км/ч по шоссе, но практически не сможет стартовать с места, особенно, в крутые холмы.
Таким образом, трансмиссия использует ряд передач — от низкого к высокой, чтобы сделать более эффективным использование крутящего момента двигателя на фоне изменения дорожных и скоростных условий машины. А шестерни в коробке передач могут заменяться вручную или автоматически.
В традиционной автоматической коробке передач шестерни — это буквально шестерни — взаимосвязанные, зубчатые колёса, которые помогают передавать и изменять вращательное движение и крутящий момент от двигателя к колёсам машины. Сочетание планетарных передач создаёт более различные передаточные числа, и передача может производить, как правило, до чётырех передач переднего хода в старых коробках и до 8 передач в новых коробках, а также одну передачу заднего хода. Когда циклы переключения передач сменяют друг друга, водитель может почувствовать толчки каждый раз, особенно, при быстром ускорении.
Как работает вариатор?
Если совсем не разбираться в работе вариатора, то может показаться, что внутри автомобиля сидят человечки и обеспечивают плавную езду машины — примерно как на рисунке
В отличие от традиционных автоматических коробок передач, бесступенчатая коробка передач (что и есть вариатор) не имеет определённого количества передач как такового, что означает, что она не имеет зубчатых шестерён. Наиболее распространённый тип вариатора работает на гениальной системе шкивов, что позволяет наличествовать бесконечным числом передач за счёт изменений толщины между двумя валами: ведущим и ведомым — без каких-либо дискретных шагов. А теперь поподробнее о самом главном: как же работает вариатор — каков общий принцип работы CVT?
В основе работы вариатора лежит принцип рычагов. Давайте постараемся визуализировать работу вариатора (а затем взглянем на картинку ниже). Представьте себе 2 вала, находящиеся рядом друг с другом, на разных концах которых прикреплены по конусообразному наконечнику. Эти валы расположены так, что конусы расположены на одном уровне рядом друг с другом (и каждый из конусов направлен в противоположные стороны). Теперь соединим эти два вала с конусами ремнём или цепью и придумаем такую конструкцию, чтобы мы могли перемещать валы вдоль их оси (перпендикулярно этому ремню), но этот ремень или цепь оставались на одном уровне. Таким образом, мы получим самый настоящий вариатор: представим, что один из этих валов ведущий (приводится в движение двигателем), а другой — ведомый (он раскручивается первым валом). Теперь, так как наконечники у нас конусообразные, мы, смещая один из валов (например, ведомый) немного назад, уменьшим изгиб ремня вокруг него, а сместив ведущий ремень также назад, мы, наоборот, увеличим радиус изгиба уже вокруг конуса ведущего ремня. Таким образом, мы получим такую ситуацию, когда ведущему валу надо сделать всего, к примеру, 2 оборота, чтобы раскрутить ведомый вал на 10 оборотов — получается, что при одном количестве оборотов двигателя, автомобиль будет ехать очень быстро. Если мы сместим теперь оба вала, наоборот, вперёд, то мы аналогично достигнем того, что ведущий вал сделает 10 оборотов, а ведомый — всего 2, что позволит нам забраться в крутую горку, тронуться с места или тянуть за собой тяжёлый груз.
Ниже на картинке визуально представлено то, что описано абзацем выше, за исключением лишь того, что конусы в реальном вариаторе не простые, а имеют по два шкива (на каждом валу по два шкива, которые обращены друг к другу и между которыми проходит ремень):
Видите, как меняется окружность двух концов ремня по мере того, как сужаются и расширяются конусы — именно за счёт этого меняется передаточное число между двигателем и колёсами автомобиля!
Если сравнить вариатор с автоматом — точнее, с планетарной системой автоматической коробки передач, то в последней Вы увидите сложный мир передач, тормозов, муфт, масляных каналов и регулирующих устройств. Для сравнения, вариатор по своему принципу работы является истинным идеалом простоты. Большинство современных вариаторов имеют только три основных компонента:
- Цепь высокой мощности или резиновый ремень особо состава также высочайшей прочности
- 2 конусообразных шкива, обращённых друг к другу, на ведущем валу
- 2 конусообразных шкива, обращённых друг к другу, на ведомом валу
Ну и, конечно же, работу вариатора очень сложно себе представить без отточенной работы бортового компьютера, который обеспечивает изменение положения шкивов в зависимости от нагрузки и скорости автомобиля. Таким образом, вариатор состоит из различных микропроцессоров и датчиков, но три компонента, описанные выше, являются ключевыми элементами, которые составляют «сердце» технологии работы вариатора.
Каждый шкив состоит из двух 20-градусных конусов, обращённых друг к другу. Ремень или цепь входит в паз между двумя конусами. В случае с вариатором клиновидные (в виде трапеции, если смотреть в разрез) ремни являются предпочтительными, если ремень выполнен из резины. Клиновые ремни, собственно, и получили своё название от того, что ремни имеют V-образное сечение, что увеличивает площадь соприкосновения и, соответственно, трение при сцеплении ремня со шкивами.
Когда два конуса шкива находятся далеко друг от друга, ремень движется глубже в образовавшейся канавке, и радиус петли ремня вокруг шкива уменьшается. Когда шкивы сближаются (когда диаметр уменьшается), ремень поднимается в канавке, и радиус петли ремня вокруг шкива, соответственно, становится больше. В вариаторах могут использоваться гидравлическое давление, центробежная сила или натяжение пружины, чтобы создать силу, необходимую для сближения половинок-шкивов.
Шкивы с переменным диаметром должны всегда располагаться парами. Один из шкивов, известный как ведущий шкив, соединён с коленчатым валом двигателя. Ведущий шкив также называют «входным«, потому что в этом случае энергия от двигателя «входит» в коробку передач. Второй шкив называют ведомым шкивом, потому первый шкив поворачивает его.
Расстояние ремня от центра шкивов, где проходит этот ремень, известно как «радиус основного тона«. Когда шкивы далеко друг от друга, радиус основного тона уменьшается. Когда шкивы близко друг к другу, ремень поднимается, и радиус увеличивается. Отношение радиуса основного тона на ведущем шкиве к радиусу на ведомом определяет сложный механизм, управляемый компьютером. Когда один шкив увеличивает свой радиус, другой, напротив, уменьшает свой радиус, и происходит это синхронно, что позволяет удержать ремень натянутым. Поскольку эти два шкива изменяют свои радиусы относительно друг друга, они создают бесконечное число передаточных чисел — от самого низкого к максимально высокому и всему, что находится между ними. Например, когда радиус основного тона мал у ведущего шкива и большой у ведомого шкива, то скорость вращения ведомого шкива уменьшается, что приводит к более низкой передаче. А когда наоборот, то достигается более высокая передача, имеющая свой максимум. Таким образом, в теории, вариатор имеет бесконечное число «передач».
Простота и бесступенчатая природа CVTs делают его идеальным вариантом коробки и чётко даёт ответ на вопрос что лучше: вариатор или автомат. Между тем, вариаторы используются не только в автомобилях, но и для различных машин и устройств. Так, CVT использовались в течение многих лет в электроинструментах и, в частности, сверлильных станках. Они также используются в различных других транспортных средствах, в том числе тракторах, снегоходах и мотороллерах.
Пример использования вариатора в велосипедах
Как устроен клиновидный ремень?
Внедрение новых материалов делает вариаторы еще более надежными и эффективными. Одним из наиболее важных достижений была разработка и создание металлических «клиновидных» ремней для подключения шкивов в качестве замены резиновым ремням и цепям. Эти гибкие ремни состоят из нескольких (обычно от 9 до 15) тонких полос из стали, которые все вместе составляют высокопрочный состав.
Устройство клиновидного ремня
Плюсы клиновидных ремней заключаются в том, что они не скользят и очень прочны, что позволяет вариаторам работать с большими значениями крутящего момента двигателя. Они также тише, чем резиновые ремни.
Цепь и клиновидный ремень вариатора
Как работает тороидальный вариатор?
Хотя система тороидального вариатора кажется значительно более другой, все компоненты аналогичны системе вариатора со шкивами и ремнём и приводят к тем же результатам — бесступенчатой работе коробки передач. И вот как это работает:
- Один диск подключается к двигателю. Это эквивалентно ведущему шкиву.
- Другой диск соединяется с приводным валом. Это эквивалентно ведомому шкиву.
- Колёсики, расположенные между дисками, действуют как ремень, изменяя передаточное число, передаваемое с одного диска на другой.
Колёсики могут вращаться по двум осям. Они вращаются вокруг горизонтальной оси и наклоняются вокруг вертикальной оси, что позволяет им касаться дисков в различных областях.
Чем хорош вариатор? Все его плюсы и минусы
Вариаторы становятся все более популярными в автомобилях, и не зря. Они могут похвастаться целым рядом преимуществ, которые делают их привлекательными как для водителей, так и для экологов. В таблице ниже приведены некоторые из ключевых особенностей и плюсов вариаторов.
Особенность | Плюсы |
---|---|
Постоянное, бесступенчатое ускорение от полной остановки до крейсерской скорости. | Плавная езда, отсутствие рывков во время переключения. |
Удержание машины в оптимальном диапазоне мощности независимо от того, как быстро машина едет. | Улучшенная топливная экономичность. |
Лучшая реакция на изменяющиеся условия, такие как наклон дороги и скорость авто. | Автомобиль почти никогда не замедляется вынужденно, даже при движении в горку. |
Меньшая потеря мощности в вариаторе, чем в типичном автомате. | Лучше динамические показатели, чем в АКПП. |
Лучшая работа оборотов двигателя. | Меньшее количество выбросов. |
Простота конструкции и малое количество составляющих. | Меньшая масса вариатора, чем автомата. |
Тем не менее, несмотря на существенные и многочисленные плюсы вариатора, он не так хорошо, как может показаться на первый взгляд. Давайте перечислим недостатки вариаторов:
- Вариаторы, несмотря на свою простоту, требуют всё же регулярного обслуживания, которое выходит за рамки простой диагностики. Всё дело в ремне CVT, который достаточно быстро изнашивается (это не относится только к цепным ремням), и потому его нужно менять примерно каждые 50-60 тысяч километров (в зависимости от модели авто и вариатора, соответственно, замена может понадобиться раньше или позднее). Для сравнения, только диагностическое ТО автомата требуется проводить в среднем на пробеге от 60 до 100 тысяч километров (опять-таки, цифры разнятся в зависимости от модели).
- В силу своей конструкции вариатор плохо пригоден для сильных нагрузок, и потому его редко используют для автомобилей, предназначенных для езды по тяжёлым дорожным условиям (внедорожников, в частности).
- Общий срок службы вариаторов довольно низок опять-таки в силу их конструкции.
- По причине под номерами 1 и 3, в общем-то ряд сервисных центров официальных дилеров попросту отказываются ремонтировать вариатор в случае его поломки, потому что нередко его полная замена намного легче. Но владельцу авто это может обойтись в цену до 30-40% от стоимости всего автомобиля.
- У вариатора есть некоторый эффект «задумчивости» — для переключения передач ему требуется около 1-2 секунд, что для некоторых водителей не очень комфортно.
Таким образом, отвечая на вопрос «что надёжнее: вариатор или автомат?», можно смело отдать предпочтение АКПП, несмотря на гораздо более сложную конструкцию последнего.
Автомобили с вариаторами были распространены в Европе в течение многих лет. Но потребовалось некоторое время, чтобы технология вариаторов закрепилась в России. Сегодня всё больше водителей предпочитают автомобили на вариаторах.
Между тем, у вариатора есть ещё один ключевой плюс. просто взгляните на изображение ниже и сравните диапазоны движения стрелок тахометра при езде машины в горку:
Детали автоматической коробки передач, Автодатчики, Топливная форсунка, Топливный насос, Шаровой шарнир
Общий доход:50 миллионов долларов США — 100 миллионов долларов США
Топ 3 рынка:Западная Европа 25% Восточная Европа 15% Северная Америка 10%
Страна / Регион: Китай Основные продукты:автозапчасти, автозапчасти, автозапчасти, автозапчасти, автозапчасти
Общий доход:Свыше 100 миллионов долларов США
Топ 3 рынка:Южная Азия 30% Западная Европа 10% , Средний Восток 10%
Страна / Регион: Китай Основные продукты:Ремень , кошелек, кошелек, сумка, чехол для телефона
Общий доход:10 миллионов долларов США — 50 миллионов долларов США
Топ 3 рынка:Северная Америка 30% Южная Европа 15% Западная Европа 15%
Страна / Регион: Китай Общий доход:10 миллионов долларов США — 50 миллионов долларов США
Топ 3 рынка:Восточная Европа 20% , Южная Америка 20% Северная Америка 20%
Страна / Регион: Китай Основные продукты:Детали трансмиссии, Электромагнит трансмиссии, Корпус клапана трансмиссии, Пластина компьютера коробки передач, Коробка передач Цепь
Общий доход:1 миллион долларов США — 2 доллара США.5 миллионов
Топ 3 рынка:Южная Азия 10% Центральная Америка 10% Южная Америка 10%
Страна / Регион: Китай Основные продукты:Детали автоматической коробки передач, Автодатчики, Топливная форсунка, Топливный насос, Шаровой шарнир
Общий доход:50 миллионов долларов США — 100 миллионов долларов США
Топ 3 рынка:Западная Европа 25% Восточная Европа 15% Северная Америка 10%
,F1C1 Cvt Цепной ремень Cvt Chain F1c1 K3104 Cvt
f1c1 CVT цепь ремень CVT цепи F1C1 K310
4 CVTТрансмиссия Master Ремкомплект | A130 A131L A132L AW55-50SN JF010E RE0F09A AL4 DPO и т.д. | ||
Капитальный ремонт коробки передач Комплект | 5HP-19 JF011E 81-40LE 03-71LS / 72LS AW50-40LE AW50-41LE и т. Д. | ||
Комплект трения коробки передач | 55-51SN 09G (TF60-SN) RE5R05A 095 096 01M 4T65E 4L60E и т. Д. | ||
Коробка передач Сталь Комплект | 4L40E 5L40E 5L50E 722,6 722,9 AL4 01м 01N AW80-40 и т.д. | ||
Коробка передач Поршень Комплект | 4R70W CD4E LA4AEL JF402E 257416 JF405E | ||
тормозной ленты | 722,4 722.320-633 GF4AEL т.д. | ||
Корпус клапана | 5HP-19 AL4 01М 9G (TF60-СН) | ||
TCU | |||
Swich | 2529 27 7700100009 | ||
CVT Transmission Chain | K310 K311 6 | 78 1 3 | 64 F1C1 |
Автоматический датчик | |||
инжектор топлива | 06164-POA-000 06164-P8A-A00 23250-28070 35310-2G200 ETC. | ||
Корпус дроссельной заслонки | SERA576-01 nissan 06A133062Q 06B133062M и т. Д. |
True Photos ‘Show:
, Цепь Передачи Пояса ЦВТ 6 Для Мини Купер Vt1 Vt2
Цепь приводного ремня CVT
Ремкомплект коробки передач | A130 A131L A132L AW55-50SN JF010E RE0F09A AL4 DPO и т.д. 5HP-19 JF011E 81-40LE 03-71LS / 72LS AW50-40LE AW50-41LE и т. Д. | ||
Комплект трения коробки передач | 55-51SN 09G (TF60-SN) RE5R05A 095 096 01M 4T65E 4L60E и т. Д. | ||
Коробка передач Сталь Комплект | 4L40E 5L40E 5L50E 722,6 722,9 AL4 01м 01N AW80-40 и т.д. | ||
Коробка передач Поршень Комплект | 4R70W CD4E LA4AEL JF402E 257416 JF405E | ||
тормозной ленты | 722,4 722.320-633 GF4AEL т.д. | ||
Корпус клапана | 5HP-19 AL4 01М 9G (TF60-СН) | ||
TCU | |||
Swich | 2529 27 7700100009 | ||
CVT Transmission Chain | K310 K311 6 | 78 1 3 | 64 F1C1 |
Автоматический датчик | |||
инжектор топлива | 06164-POA-000 06164-P8A-A00 23250-28070 35310-2G200 ETC. | ||
Корпус дроссельной заслонки | SERA576-01 nissan 06A133062Q 06B133062M и т. Д. |
Контактная информация:
,Коробка передач ЦВТ 901066 Авто ЦВТ 901074 Для Nissa N Cvt 8
1,00 — 200,00 долларов США / Кусок | 1 шт. (Мин.Порядок)
- Перевозка:
- Служба поддержки Морские перевозки